Zgadzam się
Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.
The aim of this paper is to elaborate on different models of supporting innovative processes (described by 45 input and output variables) in 319 OECD regions (divided into three groups focused on both knowledge-intensive services (KIS) and manufacturing) so as to achieve the highest level of innovation policy effectiveness. We analyse processes enhancing the growth described by GDP and GVA variables using canonical analysis. Structural models of the relationships between dependent and independent variables for each group show that every group has different factors affecting growth and only in the most developed KIS regions the factors are coherent and mutually reinforcing. Less developed regions are not so different from KIS regions, because innovative processes are in line with the development, but in this group factors influencing KIS and high-tech industries do not sufficiently reinforce each other and thus the growth could be reduced. This might be attributed to an essential gap between KIS and non updated production practices in certain sectors. Understanding these processes, it will be possible to create constructed advantage assumptions leading not only to growth and development in every group of regions, but overall to path renewal and convergence
processes in less developed regions.