Binary linear programming as a decision-making aid for water intake operators
Fragment książki (Materiały konferencyjne)
MNiSW
15
WOS
Status: | |
Autorzy: | Kozłowski Edward, Mazurkiewicz Dariusz, Kowalska Beata, Kowalski Dariusz |
Dyscypliny: | |
Aby zobaczyć szczegóły należy się zalogować. | |
Wersja dokumentu: | Drukowana | Elektroniczna |
Arkusze wydawnicze: | 0,7 |
Język: | angielski |
Strony: | 199 - 208 |
Web of Science® Times Cited: | 23 |
Scopus® Cytowania: | 24 |
Bazy: | Web of Science | Scopus | SpringerLink | EL-Compendex | DBPL | Google Scholar |
Efekt badań statutowych | NIE |
Materiał konferencyjny: | TAK |
Nazwa konferencji: | 1st International Conference on Intelligent Systems in Production Engineering and Maintenance |
Skrócona nazwa konferencji: | ISPEM 2017 |
URL serii konferencji: | LINK |
Termin konferencji: | 28 września 2017 do 29 września 2107 |
Miasto konferencji: | Wrocław |
Państwo konferencji: | POLSKA |
Publikacja OA: | NIE |
Abstrakty: | angielski |
The cost of energy consumed in the course of pumping water from its sources constitutes a considerable share of the total operating costs borne by a water company. In order to optimize the operation of a water pumping station, it is essential to devise an appropriate pumps schedule. The aim of the work was to develop a smart tool which would facilitate decision-making by the operator of a water intake, including a group of wells, supplying actual municipal waterworks. The tool creates a real-time schedule for wells and pumps integrated with them, which constitutes a basis for a final decision made by the operator, related to the degree and period of their usage. The main criterion of facilitating the decision-making pertained to achieving the minimum energy consumption during pumping water from a well to a reservoir tank, while simultaneously keeping all the wells on full stand-by. The schedule was prepared by means of binary linear programming. In this method, both the function of the goal and the limiting functions are linear, whereas the particular variables belong to the set {0,1}. |