Implementation of artificial intelligence in optimisation of technological processes
Artykuł w czasopiśmie
MNiSW
5
spoza listy
Status: | |
Autorzy: | Lipski Jerzy, Zaleski Kazimierz |
Dyscypliny: | |
Aby zobaczyć szczegóły należy się zalogować. | |
Rok wydania: | 2019 |
Wersja dokumentu: | Drukowana | Elektroniczna |
Język: | angielski |
Wolumen/Tom: | 252 |
Numer artykułu: | 03008 |
Strony: | 1 - 6 |
Web of Science® Times Cited: | 0 |
Bazy: | Web of Science |
Efekt badań statutowych | NIE |
Materiał konferencyjny: | TAK |
Nazwa konferencji: | III International Conference of Computational Methods in Engineering Science |
Skrócona nazwa konferencji: | CMES’18 |
URL serii konferencji: | LINK |
Termin konferencji: | 22 listopada 2018 do 24 listopada 2018 |
Miasto konferencji: | Kazimierz Dolny |
Państwo konferencji: | POLSKA |
Publikacja OA: | TAK |
Licencja: | |
Sposób udostępnienia: | Witryna wydawcy |
Wersja tekstu: | Ostateczna wersja opublikowana |
Czas opublikowania: | W momencie opublikowania |
Data opublikowania w OA: | 14 stycznia 2019 |
Abstrakty: | angielski |
This article introduces an algorithm for determining optimal parameters of a technological process. The objective function is the processing time of operations (efficiency) at the constraint of quality requirements of finish according to the designer specification. The problem of selecting a correct combination of processing parameters may only be solved when the cause-and-effect relationship between the finish quality and the machining settings is known. If the process considered for optimisation is repeatable, it appears economically viable to invest resources in the development of a model that would describe these relationships. To this end, we propose employing the artificial neural network trained on the progressions obtained from the tests. In the second stage, the Multiple-Input-Multiple-Output (MIMO) system, capable of representing relationships of nonlinear nature, was implemented for the optimisation of the objective function. The paper presents the application of the developed algorithm in determination of optimal parameters for the roller burnishing process of surface treatment. A technologist/software user defines the range of acceptable surface finishes. The optimisation algorithm determines a set of modifiable parameters that ensure minimal processing time at a specified surface finish requirements constraint. |