The analysis of the solar power plant performance in temperate climate
Artykuł w czasopiśmie
MNiSW
9
Lista B
Status: | |
Autorzy: | Zdyb Agata, Dragan Piotr, Jaremek Arkadiusz |
Dyscypliny: | |
Aby zobaczyć szczegóły należy się zalogować. | |
Rok wydania: | 2018 |
Wersja dokumentu: | Drukowana | Elektroniczna |
Język: | angielski |
Numer czasopisma: | 1, z. 65 |
Wolumen/Tom: | 35 |
Strony: | 73 - 79 |
Bazy: | BazTech | Google Scholar |
Efekt badań statutowych | NIE |
Materiał konferencyjny: | NIE |
Publikacja OA: | TAK |
Licencja: | |
Sposób udostępnienia: | Witryna wydawcy |
Wersja tekstu: | Ostateczna wersja opublikowana |
Czas opublikowania: | W momencie opublikowania |
Data opublikowania w OA: | 31 marca 2018 |
Abstrakty: | angielski |
Due to gradual depletion of fossil fuels resources and emission of harmful chemicals accompanying the combustion process, the interest in alternative energy sources still increases. Among many kinds of alternative sources, solar radiation is very special because of its wide availability and large technical potential. Photovoltaic systems providing the electric energy are used in many countries. The most important part of photovoltaic system is a module, which parameters (e.g. efficiency, rated power, temperature coefficients of power and efficiency, short circuit current, open circuit voltage) are determined in laboratory tests under Standard Test Conditions (STC: 25oC, 1,000 W/m2, air mass 1.5). However, in real outdoor conditions the modules exhibit lower efficiency since local climate influences their performance and different external factors generate energy losses in the whole system. The aim of this work is the performance analysis of a solar power plant connected to the grid, which total rated power is 2.985 MW and it works in temperate climate in eastern Poland. Insolation in the location was estimated according to Solargis data and the role of the modules tilt angle, of which the value is non-typical for the considered location was studied. The tilt angle smaller than optimal angle allows increasing the amount of the solar radiation collected in the summer period. The electric energy production based on the inverters data in 2016 and 2017 as well as yearly yield are presented. The results are compared to data coming from other solar power plants, also located at high latitude. |