Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
200
Lista 2021
Status:
Autorzy: Gajewski Jakub, Vališ David, Žák Libor
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2019
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Wolumen/Tom: 135
Strony: 324 - 334
Impact Factor: 4,271
Web of Science® Times Cited: 19
Scopus® Cytowania: 25
Bazy: Web of Science | Scopus
Efekt badań statutowych NIE
Materiał konferencyjny: NIE
Publikacja OA: NIE
Abstrakty: angielski
Mechanical systems need to ensure high levels of quality. Today, greater generic reliability in systems makes it difficult to base any failure prognosis on previous system failures. Predicting the condition of a mechanical system needs to be based, instead, on monitoring the degradation of a system's components. Diagnostic signals can be identified and used as data to estimate the rate of degradation. A key driver for this work is the need to understand the performance of lubricants in systems involving mechanical contact. This article presents methods for studying field data collected with regard to oil. It focuses, in particular, on contaminated oil as this is an excellent source of diagnostic signals and information. However, data on oil present a degree of uncertainty in terms of both their collection and their use in the laboratory. Analysis of oil contaminants was, therefore, performed by applying a fuzzy inference system (FIS) and neural networks. The multilayer perception network was found to be an effective tool. The concentrations of iron and soot particles in used oil were selected as being both illustrative and the most significant model variables. The aim of this study is to acquire information about the condition of both lubricants and the mechanical systems, along with the development of degradation in mechanical equipment and the estimation of residual useful life (RUL). The results obtained will be useful in organizing effective operation of the mechanical systems being studied and modifying their maintenance.