Selecting optimal parameters for cluster analysis applied to over-segmentation reduction in color images
Artykuł w czasopiśmie
Status: | |
Autorzy: | Smołka Jakub, Skublewska-Paszkowska Maria, Wojdyga Aleksander |
Rok wydania: | 2012 |
Wersja dokumentu: | Drukowana |
Język: | angielski |
Numer czasopisma: | 58 |
Strony: | 115 - 127 |
Efekt badań statutowych | NIE |
Materiał konferencyjny: | NIE |
Publikacja OA: | NIE |
Abstrakty: | angielski |
Watershed transformation is an image segmentation method whose main advantage is that it extracts almost all edges present in the image.Moreover all edges are always continuous,which is the algorithm`s main advantage.Unfortunately,the method frequently produces over-segmented images.The authors proposed a solution to the over-segmentation problem in color images.It utilizes hierarchical cluster analisys and treats watersheds as objects characteeized by a number of attributers.This paper presents research on selecting parameters for chuster analysis.The parameter sets that allow for obtaining the greates number of good segmentations of a given test image are selected.Conclusions regarding optimal parameters alongside with selected segmentations are presented. |