Robin-type boundary conditions in transition from reaction-diffusion equations in 3D domains to equations in 2D domains
Artykuł w czasopiśmie
MNiSW
140
Lista 2021
Status: | |
Autorzy: | Bobrowski Adam, Lipniacki Tomasz |
Dyscypliny: | |
Aby zobaczyć szczegóły należy się zalogować. | |
Rok wydania: | 2019 |
Wersja dokumentu: | Drukowana | Elektroniczna |
Język: | angielski |
Numer czasopisma: | 1 |
Wolumen/Tom: | 268 |
Strony: | 239 - 271 |
Impact Factor: | 2,192 |
Web of Science® Times Cited: | 5 |
Scopus® Cytowania: | 5 |
Bazy: | Web of Science | Scopus |
Efekt badań statutowych | NIE |
Materiał konferencyjny: | NIE |
Publikacja OA: | NIE |
Abstrakty: | angielski |
We consider a singular limit of diffusion equations in 3D domains of thickness converging to zero. In the 2D limit the resulting reaction-diffusion equation has a source term resulting from the Robin-type boundary conditions imposed on boundaries of the original 3D domain. The proposed approach can be applied to constructing approximate solutions of diffusion problems in thin planar, cylindrical, or spherical layers between two membranes. As an example we refer to the problem of activation of B lymphocytes, which typically have large nuclei and a thin cytoplasmic layer which can be considered as a spherical shell. For this example, assuming additionally axial symmetry we provide a rigorous convergence theorem in the language of semigroups of operators. |