Efficient Astronomical Data Condensation Using Approximate Nearest Neighbors
Artykuł w czasopiśmie
MNiSW
100
Lista 2021
Status: | |
Autorzy: | Łukasik Szymon, Lalik Konrad, Sarna Piotr, Kowalski Piotr A., Charytanowicz Małgorzata, Kulczycki Piotr |
Dyscypliny: | |
Aby zobaczyć szczegóły należy się zalogować. | |
Rok wydania: | 2019 |
Wersja dokumentu: | Drukowana | Elektroniczna |
Język: | angielski |
Numer czasopisma: | 3 |
Wolumen/Tom: | 29 |
Strony: | 467 - 476 |
Impact Factor: | 0,967 |
Web of Science® Times Cited: | 2 |
Scopus® Cytowania: | 3 |
Bazy: | Web of Science | Scopus |
Efekt badań statutowych | NIE |
Materiał konferencyjny: | NIE |
Publikacja OA: | TAK |
Licencja: | |
Sposób udostępnienia: | Otwarte czasopismo |
Wersja tekstu: | Ostateczna wersja opublikowana |
Czas opublikowania: | W momencie opublikowania |
Data opublikowania w OA: | 28 września 2019 |
Abstrakty: | angielski |
Extracting useful information from astronomical observations represents one of the most challenging tasks of data exploration. This is largely due to the volume of the data acquired using advanced observational tools. While other challenges typical for the class of big data problems (like data variety) are also present, the size of datasets represents the most significant obstacle in visualization and subsequent analysis. This paper studies an efficient data condensation algorithm aimed at providing its compact representation. It is based on fast nearest neighbor calculation using tree structures and parallel processing. In addition to that, the possibility of using approximate identification of neighbors, to even further improve the algorithm time performance, is also evaluated. The properties of the proposed approach, both in terms of performance and condensation quality, are experimentally assessed on astronomical datasets related to the GAIA mission. It is concluded that the introduced technique might serve as a scalable method of alleviating the problem of the dataset size. |