Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
100
Lista 2021
Status:
Autorzy: Szymańska-Chargot Monika, Chylińska Monika, Pertile Giorgia, Pieczywek Piotr, Cieślak Krystian, Zdunek Artur, Frąc Magdalena
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2019
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Numer czasopisma: 18
Wolumen/Tom: 26
Strony: 9613 - 9629
Impact Factor: 4,21
Web of Science® Times Cited: 43
Scopus® Cytowania: 55
Bazy: Web of Science | Scopus
Efekt badań statutowych NIE
Materiał konferencyjny: NIE
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Otwarte czasopismo
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 18 września 2019
Abstrakty: angielski
Films of carrot cellulose nanofibrils (CCNFs) with the addition of low-viscosity chitosan (CHIT) were prepared by the vacuum filtration. The chitosan content in the films varied from 9 to 33% (dry wt. basis). The surface morphology of the films was investigated by scanning electron microscopy, and it was found that chitosan was dispersed in the CCNF matrix. The interaction between CCNFs and CHIT was evaluated in terms of Fourier transform infrared spectroscopy (FTIR). The obtained results suggested physical interactions rather than hydrogen bonding between CCNFs and CHIT. This finding also supports the results of the water wettability experiment. The addition of chitosan to the nanocellulose matrix causes an increase in the water contact angle, i.e., the surface of the composites becomes more hydrophobic. This increase is probably connected to an interaction between nanocellulose and chitosan forming a denser structure. Analyses of thermal properties showed that the composites are stable under high temperature, and the degradation occurred above 300 °C. It was found that the addition of CHIT to CCNF matrices caused a decrease in the Young’s modulus—the higher that the concentration of chitosan in the composite was, the lower the Young’s modulus (decreased from 14.71 GPa for CCNFs to 8.76 GPa for CCNF/CHIT_5). Additionally, the tensile strength of composites, i.e., the maximum force that causes a fracture decreased after the addition of chitosan (decreased from 145.83 MPa for CCNFs to 129.43 MPa for CCNF/CHIT_5). The results indicated the highest inhibitory effect of the investigated composites against E. coli and S. epidermidis. Whereas M. luteus was inhibited only by the higher concentration of chitosan in the tested composites, inhibition was not found against C. krissii and all tested filamentous fungi.