Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
5
spoza listy
Status:
Autorzy: Grzegórski Stanisław Marian
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2019
Wersja dokumentu: Elektroniczna
Język: angielski
Numer czasopisma: 5
Wolumen/Tom: 8
Strony: 82 - 87
Efekt badań statutowych NIE
Materiał konferencyjny: NIE
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Witryna wydawcy
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 22 listopada 2019
Abstrakty: angielski
The Jacobi, Gauss-Seidel and SOR methods belong to the class of simple iterative methods for linear systems. Because of the parameter , the SOR method is more effective than the Gauss-Seidel method. Here, a new approach to the simple iterative methods is proposed. A new parameter q can be introduced to every simple iterative method. Then, if a matrix of a system is positive definite and the parameter q is sufficiently large, the method is convergent. The original Jacobi method is convergent only if the matrix is diagonally dominated, while the Jacobi method with the parameter q is convergent for every positive definite matrix. The optimality criterion for the choice of the parameter q is given, and thus, interesting results for the Jacobi, Richardson and Gauss-Seidel methods are obtained. The Gauss-Seidel method with the parameter q, in a sense, is equivalent to the SOR method. From the formula for the optimal value of q results the formula for optimal value of . Up to present, this formula was known only in special cases. Practical useful approximate formula for optimal value  is also given. The influence of the parameter q on the speed of convergence of the simple iterative methods is shown in a numerical example. Numerical experiments confirm: for very large scale systems the speed of convergence of the SOR method with optimal or approximate parameter  is near the same (in some cases better) as the speed of convergence of the conjugate gradients method.