Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

Publikacje Pracowników PL z lat 1990-2010

Publikacje pracowników Politechniki Lubelskie z lat 1990-2010 dostępne są jak dotychczas w starej bazie publikacji
LINK DO STAREJ BAZY

MNiSW
200
Lista 2021
Status:
Autorzy: Mikulski Maciej, Balakrishnan Praveen Ramanujam, Hunicz Jacek
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2019
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Wolumen/Tom: 254
Numer artykułu: 113638
Strony: 1 - 20
Web of Science® Times Cited: 18
Scopus® Cytowania: 23
Bazy: Web of Science | Scopus
Efekt badań statutowych NIE
Materiał konferencyjny: NIE
Publikacja OA: NIE
Abstrakty: angielski
Dual-fuel reactivity controlled compression ignition combustion offers potentially superior overall efficiency and ultra-low nitrogen oxides and soot emissions. Using natural gas as the low reactivity fuel also provides high knock-resistance and carbon dioxide emission reduction. However, the concept suffers from relatively low combustion efficiency at low engine loads, causing unacceptable methane slip. This study tackles this issue, applying numerical simulations to investigate the application of negative valve overlap to improve combustion efficiency of reactivity controlled compression ignition at low engine loads. The objective is modification of in-cylinder thermal and chemical state before combustion, by varying timing and amount of fuel injected directly into the recompressed hot exhaust gases. The study uses TNO's multi-zone, chemical kinetics-based combustion model with variable valve actuation functionality. The simulation is based on two experimentally validated cases: an uncooled exhaust gas recirculation strategy and a lean burn concept. In both cases, negative valve overlap elevates in-cylinder temperature and cuts methane emissions by 15%, without combustion optimization. Crucially, it enables peak exhaust recompression temperatures above 850 K, sufficient for diesel reforming/oxidation. The lean RCCI strategy takes greater advantage of fuel reforming than the exhaust gas recirculation case. Optimum conditions give almost 99% combustion efficiency and ultra-low methane emissions. Net indicated efficiency is 40.5% (@15% load), despite negative valve overlap’s substantial pumping losses. Low-load net efficiency is 5.5 percentage points above the lean strategy baseline and 3 pp. better than the exhaust gas recirculation baseline. This strategy is considered applicable on state-of-the-art dual-fuel gas engines without hardware changes.