A Three-Class Classification of Cognitive Workload Based on EEG Spectral Data
Artykuł w czasopiśmie
MNiSW
100
Lista 2021
Status: | |
Autorzy: | Plechawska-Wójcik Małgorzata, Tokovarov Mikhail, Kaczorowska Monika, Zapała Dariusz |
Dyscypliny: | |
Aby zobaczyć szczegóły należy się zalogować. | |
Rok wydania: | 2019 |
Wersja dokumentu: | Elektroniczna |
Język: | angielski |
Numer czasopisma: | 24 |
Wolumen/Tom: | 9 |
Strony: | 1 - 15 |
Impact Factor: | 2,474 |
Web of Science® Times Cited: | 38 |
Scopus® Cytowania: | 47 |
Bazy: | Web of Science | Scopus |
Efekt badań statutowych | NIE |
Materiał konferencyjny: | NIE |
Publikacja OA: | TAK |
Licencja: | |
Sposób udostępnienia: | Witryna wydawcy |
Wersja tekstu: | Ostateczna wersja opublikowana |
Czas opublikowania: | W momencie opublikowania |
Data opublikowania w OA: | 6 grudnia 2019 |
Abstrakty: | angielski |
Evaluation of cognitive workload finds its application in many areas, from educational program assessment through professional driver health examination to monitoring the mental state of people carrying out jobs of high responsibility, such as pilots or airline traffic dispatchers. Estimation of multilevel cognitive workload is a task usually realized in a subject-dependent way, while the present research is focused on developing the procedure of subject-independent evaluation of cognitive workload level. The aim of the paper is to estimate cognitive workload level in accordance with subject-independent approach, applying classical machine learning methods combined with feature selection techniques. The procedure of data acquisition was based on registering the EEG signal of the person performing arithmetical tasks divided into six intervals of advancement. The analysis included the stages of preprocessing, feature extraction, and selection, while the final step covered multiclass classification performed with several models. The results discussed show high maximal accuracies achieved: ~91% for both the validation dataset and for the cross-validation approach for kNN model. |