Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
20
Poziom I
Status:
Autorzy: Kupershtein Leonid M., Martyniuk Tatiana B., Voitovych Olesia P., Kulchytskyi Bohdan V., Kozhemiako Andrii V., Sawicki Daniel, Kalimoldayev Maksat
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Strony: 521 - 530
Web of Science® Times Cited: 3
Scopus® Cytowania: 3
Bazy: Web of Science | Scopus
Efekt badań statutowych NIE
Materiał konferencyjny: TAK
Nazwa konferencji: XLIV-th IEEE-SPIE Joint Symposium on Photonics, Web Engineering, Electronics for Astronomy and High Energy Physics Experiments
Skrócona nazwa konferencji: XLIV SPIE-IEEE-PSP 2019
URL serii konferencji: LINK
Termin konferencji: 26 maja 2019 do 2 czerwca 2019
Miasto konferencji: Wilga
Państwo konferencji: POLSKA
Publikacja OA: NIE
Abstrakty: angielski
There are research results of artificial neural networks usage for solving a hardly formalized objective – detection of a DDoS attacks on the computer network information resource in this article. An analysis of existing methods, technologies and tools for detecting DDoS attacks and protecting from them is carried out. Several feed forward neural networks are simulated. The architecture of the neural network which provides high-precision detection is presented.