Zgadzam się
Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.
Recurrence-plot (RP) analysis is a graphical tool to visualize and analyze the recurrence
of nonlinear dynamic systems. By combining the advantages of the RP and a convolutional neural
network (CNN), a fault-classification scheme for planetary gear sets is proposed in this paper. In
the proposed approach, a vibration is first picked up from the planetary-gear test rig and converted
into an angular-domain quasistationary signal through computed order tracking to eliminate the
frequency blur caused by speed fluctuations. Then, the signal in the angular domain is divided
into several segments, and each segment is processed by the RP to constitute the training sample.
Moreover, a two-dimensional CNN model was developed to adaptively extract faulty features.
Experiments on a planetary-gear test rig with four conditions under three operating speeds were
carried out. The results of measured vibration demonstrated the validity of CNN and recurrence plot
analysis for the fault classification of planetary-gear sets.