Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
100
Lista 2021
Status:
Autorzy: Wang Dan-Feng, Guo Yu, Wu Xing, Na Jing, Litak Grzegorz
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2020
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Numer czasopisma: 3
Wolumen/Tom: 10
Numer artykułu: 932
Strony: 1 - 12
Impact Factor: 2,679
Web of Science® Times Cited: 28
Scopus® Cytowania: 32
Bazy: Web of Science | Scopus
Efekt badań statutowych NIE
Finansowanie: This research was funded by the National Natural Science Foundation of China, grant number 51675251.
Materiał konferencyjny: NIE
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Witryna wydawcy
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 31 stycznia 2020
Abstrakty: angielski
Recurrence-plot (RP) analysis is a graphical tool to visualize and analyze the recurrence of nonlinear dynamic systems. By combining the advantages of the RP and a convolutional neural network (CNN), a fault-classification scheme for planetary gear sets is proposed in this paper. In the proposed approach, a vibration is first picked up from the planetary-gear test rig and converted into an angular-domain quasistationary signal through computed order tracking to eliminate the frequency blur caused by speed fluctuations. Then, the signal in the angular domain is divided into several segments, and each segment is processed by the RP to constitute the training sample. Moreover, a two-dimensional CNN model was developed to adaptively extract faulty features. Experiments on a planetary-gear test rig with four conditions under three operating speeds were carried out. The results of measured vibration demonstrated the validity of CNN and recurrence plot analysis for the fault classification of planetary-gear sets.