Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
20
Poziom I
Status:
Autorzy: Kolesnytskyj Oleh K., Kutsman Vladislav V., Skorupski Krzysztof, Arshidinova Mukaddas
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Strony: 60 - 68
Web of Science® Times Cited: 0
Scopus® Cytowania: 1
Bazy: Web of Science | Scopus
Efekt badań statutowych NIE
Materiał konferencyjny: TAK
Nazwa konferencji: XLIV-th IEEE-SPIE Joint Symposium on Photonics, Web Engineering, Electronics for Astronomy and High Energy Physics Experiments
Skrócona nazwa konferencji: XLIV SPIE-IEEE-PSP 2019
URL serii konferencji: LINK
Termin konferencji: 26 maja 2019 do 2 czerwca 2019
Miasto konferencji: Wilga
Państwo konferencji: POLSKA
Publikacja OA: NIE
Abstrakty: angielski
The paper clarifies neurocomputer and neurocomputer architecture term definitions. The choice of spiking neural network as neurocomputer operating unit is substantiated. The spiking neurocomputer organization principles are formulated by analyzing and generalization of the current level of knowledge on neurocomputer architecture (based on analogy with the well-known von Neumann digital computer organization principles). Analytical overview of current projects on spiking neural networks hardware implementation is conducted. Their major disadvantages are highlighted. Optoelectronic hardware implementation of spiking neural network is proposed as such that is free of mentioned disadvantages due to usage of optical signals for communication between neurons, as well as organization of learning through hardware. The main technical parameters of the proposed spiking neural network are estimated.