Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

Status:
Autorzy: Sangwal Keshra
Rok wydania: 2009
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Numer czasopisma: 16
Wolumen/Tom: 311
Strony: 4050 - 4061
Impact Factor: 1,534
Web of Science® Times Cited: 52
Scopus® Cytowania: 55
Bazy: Web of Science | Scopus
Efekt badań statutowych NIE
Materiał konferencyjny: NIE
Publikacja OA: NIE
Abstrakty: angielski
The novel approach to interpret the metastable zone width obtained by the polythermal method using the classical theory of three-dimensional nucleation proposed recently [K. Sangwal, Cryst. Growth Des. 9 (2009) 942] is extended to describe the metastable zone width of solute–solvent systems in the presence of impurities. It is considered that impurity particles present in the solution can change the nucleation rate J by affecting both the kinetic factor A and the term B related with the solute–solvent interfacial energy γ. An expression relating metastable zone width, as defined by the maximum supercooling ΔTmax of a solution saturated at temperature T0, with cooling rate R is proposed in the form: (T0/ΔTmax)2=F(1−Z ln R), where F and Z are constants. The above relation can also be applied to describe the experimental data on maximum supercooling ΔTmax obtained at a given constant R as a function of impurity concentration ci by the polythermal method and on maximum supersaturation σmax as a function of impurity concentration ci by the isothermal method. Experimental data on ΔTmax obtained as a function of cooling rate R for solutions containing various concentrations ci of different impurities and as a function of concentration ci of impurities at constant R by the polythermal method and on σmax as a function of impurity concentration ci by the isothermal method are analyzed satisfactorily using the above approach. The experimental data are also analyzed using the expression of the self-consistent Nývlt-like approach [K. Sangwal, Cryst. Res. Technol. 44 (2009) 231]: ln(ΔTmax/T0)=Φ+β ln R, where Φ and β are constants. It was found that the trends of the dependences of Φ and β on impurity concentration ci are similar to those observed in the trends of the dependences of constants F and Z on ci predicted by the approach based on the classical nucleation theory.