Magnetic properties of Co-based amorphous ribbon under cyclic heating and cooling
Artykuł w czasopiśmie
Status: | |
Autorzy: | Konieczny Jarosław, Borisjuk A., Paszeczko Mychajło, Dobrzański Leszek A. |
Rok wydania: | 2010 |
Wersja dokumentu: | Drukowana | Elektroniczna |
Język: | angielski |
Numer czasopisma: | 1-2 |
Wolumen/Tom: | 42 |
Strony: | 42 - 49 |
Bazy: | BazTech |
Efekt badań statutowych | NIE |
Materiał konferencyjny: | NIE |
Publikacja OA: | NIE |
Abstrakty: | angielski |
Purpose: The aim of the work is to investigate the changes of magnetic properties of the cobalt based Co68Fe4Mo1Si13.5B13.5 alloy under cycling heating and cooling. Design/methodology/approach: The amorphous metallic ribbons were manufactured by planar-flow-casting method. Investigations of the magnetic properties were observed under permanent heating amorphous and partially crystallized alloy. Observations of the structure were made on the JOEL transmission electron microscope (TEM). Using the HFQS program the distributions of the magnetic hyperfine P(H) fields were determined for spectra smoothed in this way, employing the Hesse-Rübartsch method. Findings: The analysis of the magnetic properties under permanent heating and structure of the Co-based amorphous ribbons obtained in the by planar-flow-casting process proved that the permanent heating caused the crystallization of second magnetic phase after transition near to paramagnetic state. Research limitations/implications: The appropriate cyclic heating and cooling significantly decreasing soft magnetic properties of examined amorphous alloy. The cyclic heating beginning of elementary crystallization processes and the end of crystallization alloy. Practical implications: According to the results presented in the paper the examined Co-based glassy alloys as a soft ferromagnetic material may be utilized in construction of magnetic cores such as choke coils, common mode and noise filter and is of great technological interest. Originality/value: The paper presents influence of permanent heating on structural changes of metallic ribbons. Results and discussion of the influence of permanent heating on magnetic properties of metallic ribbon are presented. |