Optimum choice of signals' features used in toothed gears' diagnosis
Artykuł w czasopiśmie
Status: | |
Warianty tytułu: |
Optymalny wybór cech sygnałów wykorzystywanych w diagnozowaniu przekładni zębatych
|
Autorzy: | Jedliński Łukasz, Jonak Józef |
Rok wydania: | 2010 |
Wersja dokumentu: | Drukowana | Elektroniczna |
Język: | angielski |
Numer czasopisma: | 3 |
Wolumen/Tom: | 55 |
Strony: | 9 - 12 |
Bazy: | BazTech |
Efekt badań statutowych | NIE |
Materiał konferencyjny: | NIE |
Publikacja OA: | NIE |
Abstrakty: | angielski | polski |
The article proposes an algorithm to choose optimum diagnostic features used in toothed gears' diagnosis. The test object is a single-bevel gear in the research area. From the gear in two technical states there were collected vibration signals and eight features were calculated. Feature and machine state correlation degree depends on the type of damage and analyzed object properties. Some features are insensitive to particular damage or may transmit the same information. Signal features choice is a crucial step which influences the final technical condition evaluation. With the algorithm that automatically verifies features' usability there were chosen four best correlated with the technical condition of the object. Gear state classifiers were two neural networks, one formed of four features and the other of all eight. The other one was set to check features' choice accuracy. | |
W artykule przedstawiono algorytm doboru optymalnych cech diagnostycznych używanych w diagnozowaniu przekładni zębatych. Obiektem badań była przekładnia jednostopniowa stożkowa badana na stanowisku badawczym. Z przekładni w dwóch stanach technicznych zarejestrowano sygnały drgań i obliczono osiem cech. Stopień korelacji cechy ze stanem maszyny zależy od rodzaju uszkodzenia i właściwości analizowanego obiektu. Niektóre cechy nie są czułe na dane uszkodzenie, lub mogą przekazywać tę samą informację. Wybór cech sygnału jest krytycznym krokiem, który ma wpływ na ostateczny wynik oceny stanu technicznego Za pomocą algorytmu, który w sposób automatyczny weryfikuje przydatność cech wybrano cztery najbardziej skorelowane ze stanem technicznym obiektu. Klasyfikatorem stanu przekładni były dwie sieci neuronowe, pierwsza utworzona dla czterech cech a druga dla wszystkich ośmiu. Druga sieć miała na celu sprawdzenie poprawności wyboru cech. |