Rainbow numbers for cycles with pendant edges
Artykuł w czasopiśmie
Status: | |
Autorzy: | Gorgol Izolda |
Rok wydania: | 2008 |
Wersja dokumentu: | Drukowana | Elektroniczna |
Język: | angielski |
Numer czasopisma: | 4 |
Wolumen/Tom: | 24 |
Strony: | 327 - 331 |
Impact Factor: | 0,302 |
Web of Science® Times Cited: | 11 |
Scopus® Cytowania: | 12 |
Bazy: | Web of Science | Scopus |
Efekt badań statutowych | NIE |
Materiał konferencyjny: | NIE |
Publikacja OA: | NIE |
Abstrakty: | angielski |
A subgraph of an edge-colored graph is called rainbow if all of its edges have different colors. For a graph H and a positive integer n, the anti-Ramsey number f (n, H) is the maximum number of colors in an edge-coloring of K-n with no rainbow copy of H. The rainbow number rb(n, H) is the minimum number of colors such that any edge-coloring of K-n with rb(n, H) number of colors contains a rainbow copy of H. Certainly rb(n, H) = f(n, H) + 1. Anti-Ramsey numbers were introduced by Erdos et al. [4] and studied in numerous papers. |