Rainbow numbers for cycles with pendant edges
Artykuł w czasopiśmie
| Status: | |
| Autorzy: | Gorgol Izolda |
| Rok wydania: | 2008 |
| Wersja dokumentu: | Drukowana | Elektroniczna |
| Język: | angielski |
| Numer czasopisma: | 4 |
| Wolumen/Tom: | 24 |
| Strony: | 327 - 331 |
| Impact Factor: | 0,302 |
| Web of Science® Times Cited: | 12 |
| Scopus® Cytowania: | 13 |
| Bazy: | Web of Science | Scopus |
| Efekt badań statutowych | NIE |
| Materiał konferencyjny: | NIE |
| Publikacja OA: | NIE |
| Abstrakty: | angielski |
| A subgraph of an edge-colored graph is called rainbow if all of its edges have different colors. For a graph H and a positive integer n, the anti-Ramsey number f (n, H) is the maximum number of colors in an edge-coloring of K-n with no rainbow copy of H. The rainbow number rb(n, H) is the minimum number of colors such that any edge-coloring of K-n with rb(n, H) number of colors contains a rainbow copy of H. Certainly rb(n, H) = f(n, H) + 1. Anti-Ramsey numbers were introduced by Erdos et al. [4] and studied in numerous papers. |