|
A subgraph of an edge-colored graph is rainbow if all of its edges have different colors. For a graph H and a positive integer n, the anti-Ramsey number f(n,H) is the maximum number of colors in an edge-coloring of Kn with no rainbow copy of H. The rainbow number rb(n,H) is the minimum number of colors such that any edge-coloring of Kn with rb(n,H) number of colors contains a rainbow copy of H. Certainly rb(n,H) = f(n,H)+1. Anti-Ramsey numbers were introduced by Erdös et al. [5] and studied in numerous papers.
We show that rb(n,K1,4+e) = n+2 in all nontrivial cases.
|