ICA-Based Single Channel Source Separation With Time-Frequency Decomposition
Fragment książki (Rozdział monografii pokonferencyjnej)
MNiSW
20
Poziom I
Status: | |
Autorzy: | Mika Dariusz, Budzik Grzegorz, Józwik Jerzy |
Dyscypliny: | |
Aby zobaczyć szczegóły należy się zalogować. | |
Wersja dokumentu: | Drukowana | Elektroniczna |
Język: | angielski |
Strony: | 238 - 243 |
Web of Science® Times Cited: | 3 |
Scopus® Cytowania: | 3 |
Bazy: | Web of Science | Scopus |
Efekt badań statutowych | NIE |
Materiał konferencyjny: | TAK |
Nazwa konferencji: | 7th IEEE International Workshop on Metrology for AeroSpace |
Skrócona nazwa konferencji: | MetroAeroSpace 2020 |
URL serii konferencji: | LINK |
Termin konferencji: | 22 czerwca 2020 do 24 czerwca 2020 |
Miasto konferencji: | Pisa |
Państwo konferencji: | WŁOCHY |
Publikacja OA: | NIE |
Abstrakty: | angielski |
This paper relates to the separation of single channel source signals from a single mixed signal by means of independent component analysis (ICA). The proposed idea lies in a time-frequency representation of the mixed signal. Statistically independent time-frequency domain (TFD) components of the mixed signal obtained by ICA are grouped by hierarchical clustering and k-mean partitional clustering. The distance between TFD components is measured with the classical Euclidean distance and the β distance of Gaussian distribution. The proposed method was used to separate source signals from single audio mixes of two- and three-component signals. The separation was performed using algorithms written by the authors in Matlab. The best separation results were obtained with the use of the ß distance of Gaussian distribution, a distance measure based on the knowledge of the probabilistic nature of spectra of original constituent signals of the mixed signal. |