The Use of Neural Networks and Genetic Algorithms to Control Low Rigidity Shafts Machining
Artykuł w czasopiśmie
MNiSW
100
Lista 2021
Status: | |
Autorzy: | Świć Antoni, Wołos Dariusz, Gola Arkadiusz, Kłosowski Grzegorz |
Dyscypliny: | |
Aby zobaczyć szczegóły należy się zalogować. | |
Rok wydania: | 2020 |
Wersja dokumentu: | Drukowana | Elektroniczna |
Język: | angielski |
Numer czasopisma: | 17 |
Wolumen/Tom: | 20 |
Numer artykułu: | 4683 |
Strony: | 1 - 23 |
Impact Factor: | 3,576 |
Web of Science® Times Cited: | 11 |
Scopus® Cytowania: | 15 |
Bazy: | Web of Science | Scopus |
Efekt badań statutowych | NIE |
Finansowanie: | The project/research was financed in the framework of the project Lublin University of Technology-Regional Excellence Initiative, funded by the Polish Ministry of Science and Higher Education (contract no. 030/RID/2018/19). |
Materiał konferencyjny: | NIE |
Publikacja OA: | TAK |
Licencja: | |
Sposób udostępnienia: | Witryna wydawcy |
Wersja tekstu: | Ostateczna wersja opublikowana |
Czas opublikowania: | W momencie opublikowania |
Data opublikowania w OA: | 19 sierpnia 2020 |
Abstrakty: | angielski |
The article presents an original machine-learning-based automated approach for controlling the process of machining of low-rigidity shafts using artificial intelligence methods. Three models of hybrid controllers based on different types of neural networks and genetic algorithms were developed. In this study, an objective function optimized by a genetic algorithm was replaced with a neural network trained on real-life data. The task of the genetic algorithm is to select the optimal values of the input parameters of a neural network to ensure minimum deviation. Both input vector values and the neural network’s output values are real numbers, which means the problem under consideration is regressive. The performance of three types of neural networks was analyzed: a classic multilayer perceptron network, a nonlinear autoregressive network with exogenous input (NARX) prediction network, and a deep recurrent long short-term memory (LSTM) network. Algorithmic machine learning methods were used to achieve a high level of automation of the control process. By training the network on data from real measurements, we were able to control the reliability of the turning process, taking into account many factors that are usually overlooked during mathematical modelling. Positive results of the experiments confirm the effectiveness of the proposed method for controlling low-rigidity shaft turning. |