Biomechanics of the Human Middle Ear with Viscoelasticity of the Maxwell and the Kelvin–Voigt Type and Relaxation Effect
Artykuł w czasopiśmie
MNiSW
140
Lista 2021
Status: | |
Autorzy: | Rusinek Rafał, Szymański Marcin, Zabłotni Robert |
Dyscypliny: | |
Aby zobaczyć szczegóły należy się zalogować. | |
Rok wydania: | 2020 |
Wersja dokumentu: | Elektroniczna |
Język: | angielski |
Numer czasopisma: | 17 |
Wolumen/Tom: | 13 |
Numer artykułu: | 3779 |
Strony: | 1 - 15 |
Impact Factor: | 3,623 |
Web of Science® Times Cited: | 3 |
Scopus® Cytowania: | 3 |
Bazy: | Web of Science | Scopus |
Efekt badań statutowych | NIE |
Finansowanie: | This research was funded by the NATIONAL SCIENCE CENTRE (Poland) under Grant No. 2018/29/B/ST8/01293. |
Materiał konferencyjny: | NIE |
Publikacja OA: | TAK |
Licencja: | |
Sposób udostępnienia: | Witryna wydawcy |
Wersja tekstu: | Ostateczna wersja opublikowana |
Czas opublikowania: | W momencie opublikowania |
Data opublikowania w OA: | 27 sierpnia 2020 |
Abstrakty: | angielski |
The middle ear is one of the smallest biomechanical systems in the human body and is responsible for the hearing process. Hearing is modelled in different ways and by various methods. In this paper, three-degree-of-freedom models of the human middle ear with different viscoelastic properties are proposed. Model 1 uses the Maxwell type viscoelasticity, Model 2 is based on the Kelvin–Voigt viscoelasticity, and Model 3 uses the Kelvin–Voigt viscoelasticity with relaxation effect. The primary aim of the study is to compare the models and their dynamic responses to a voice excitation. The novelty of this study lies in using different models of viscoelasticity and relaxation effect that has been previously unstudied. First, mathematical models of the middle ear were built, then they were solved numerically by the Runge–Kutta procedure and finally, numerical results were compared with those obtained from experiments carried out on the temporal bone with the Laser Doppler Vibrometer. The models exhibit differences in the natural frequency and amplitudes near the second resonance. All analysed models can be used for modelling the rapidly changing processes that occur in the ear and to control active middle ear implants. |