Optimisation of the Thin-Walled CompositeStructures in Terms of Critical Buckling Force
Artykuł w czasopiśmie
MNiSW
140
Lista 2021
Status: | |
Autorzy: | Szklarek Karol, Gajewski Jakub |
Dyscypliny: | |
Aby zobaczyć szczegóły należy się zalogować. | |
Rok wydania: | 2020 |
Wersja dokumentu: | Elektroniczna |
Język: | angielski |
Numer czasopisma: | 17 |
Wolumen/Tom: | 13 |
Numer artykułu: | 3881 |
Strony: | 1 - 19 |
Impact Factor: | 3,623 |
Web of Science® Times Cited: | 10 |
Scopus® Cytowania: | 13 |
Bazy: | Web of Science | Scopus |
Efekt badań statutowych | NIE |
Finansowanie: | This research project was financed in the framework of the Lublin University of Technology- Regional Excellence Initiative project, funded by the Polish Ministry of Science and Higher Education (contract no. 030/RID/2018/19). |
Materiał konferencyjny: | NIE |
Publikacja OA: | TAK |
Licencja: | |
Sposób udostępnienia: | Witryna wydawcy |
Wersja tekstu: | Ostateczna wersja opublikowana |
Czas opublikowania: | W momencie opublikowania |
Data opublikowania w OA: | 2 września 2020 |
Abstrakty: | angielski |
The paper presents the optimisation of thin-walled composite structures on a representative sample of a thin-walled column made of carbon laminate with a channel section-type profile. The optimisation consisted of determining the configuration of laminate layers for which the tested structure has the greatest resistance to the loss of stability. The optimisation of the layer configuration was performed using two methods. The first method, divided into two stages to reduce the time, was to determine the optimum arrangement angle in each laminate layer using finite element methods (FEM). The second method employed artificial neural networks for predicting critical buckling force values and the creation of an optimisation tool. Artificial neural networks were combined into groups of networks, thereby improving the quality of the obtained results and simplifying the obtained neural networks. The results from computations were verified against the results obtained from the experiment. The optimisation was performed using ABAQUS® and STATISTICA® software. |