Zgadzam się
Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.
The project/research was financed in the framework of
the project Lublin University of Technology - Regional Excellence
Initiative, funded by the Polish Ministry of Science and Higher
Education (contract no. 030/RID/2018/19 ).
This paper presents methods for damage detection in machined material on the basis of time series measured during milling of glass-fiber–reinforced polymer (GFRP). Recurrence methods and different types of entropy have emerged as useful tools for detecting subtle non-stationarities and/or changes in nonlinear signals. In this research, a recurrence plot, recurrence quantifications, an approximate entropy, and sample entropy are used. By identifying changes in the cutting force measured during the composite milling process, the damage occurrence has been detected. Firstly, the damage has been modelled as the intentionally introduced hole with different diameters and depths in order to estimate the size detectable damages and to select proper recurrence measures as damage indicators. Next, the experiments with the real damage have been performed and the damage indicators have used.