Analiza wybranych metod tworzenia sztucznej inteligencji na przykładzie popularnej gry w karty
Artykuł w czasopiśmie
MNiSW
5
spoza listy
Status: | |
Warianty tytułu: |
Analiza wybranych metod tworzenia sztucznej inteligencji na przykładzie popularnej gry w karty
Analysis of selected methods of creating artificial intelligence on the example of a popular card game
|
Autorzy: | Gałka Łukasz, Dzieńkowski Mariusz |
Dyscypliny: | |
Aby zobaczyć szczegóły należy się zalogować. | |
Rok wydania: | 2020 |
Wersja dokumentu: | Drukowana | Elektroniczna |
Język: | polski |
Wolumen/Tom: | 16 |
Strony: | 233 - 240 |
Bazy: | BazTech |
Efekt badań statutowych | NIE |
Materiał konferencyjny: | NIE |
Publikacja OA: | TAK |
Licencja: | |
Sposób udostępnienia: | Witryna wydawcy |
Wersja tekstu: | Ostateczna wersja opublikowana |
Czas opublikowania: | W momencie opublikowania |
Data opublikowania w OA: | 30 września 2020 |
Abstrakty: | polski | polski |
The aim of the article was to analyze selected methods of creating artificial intelligence in a popular card game. Two experiments were conducted: with a human and with a computer. The following algorithms were analyzed: random, min-max, based on a neural network, statistical and statistical with the use of “cheating” technique. The examined parameters were as follows: efficiency, execution time, number of implementation code lines, implementation time and training duration. The indicator with the greatest impact on the selection of the most optimal method was efficiency. The research has shown no difference in efficiency for the neural network-based algorithm and the statistical algorithm. In other cases, the differences in this feature were significant. The use of the “cheating” technique has increased the efficiency. | |
Celem artykułu była analiza wybranych metod tworzenia sztucznej inteligencji w popularnej grze w karty. Zostały przeprowadzone dwa eksperymenty: z człowiekiem oraz z komputerem. Analizie poddano algorytmy: losowy, min- max, bazujący na sieci neuronowej, statystyczny oraz statystyczny z użyciem techniki „oszukiwania”. Zbadano takie parametry jak: skuteczność, czas wykonania, liczbę linii kodu implementacji, czas implementacji oraz czas trwania treningu. Wskaźnikiem mającym największy wpływ na wybór najbardziej optymalnej metody była skuteczność. Badania wykazały brak różnic w skuteczności dla algorytmu bazującego na sieci neuronowej i algorytmu statystycznego. W pozostałych przypadkach różnice tej cechy były istotne. Użycie techniki „oszukiwania” zwiększyło skuteczność. |