|
The paper presents a numerical simulation of active multiple layer composite beams in bending test. Within framework of performed analysis glass-epoxy and carbon-epoxy laminates with integrated piezoelectric actuators were considered. In the research macro fiber composite (MFC) type transducers exhibiting d33 effect were used. The numerical models and further calculations were done in ABAQUS/Standard FEM software. Discrete models of the considered composite beam structures were formulated according to the Layup-Ply technique. In performed tests nonlinear geometric effects corresponding to large structural deflections were taken into account. The resulting state equations were solved by means of Newton-Raphson iterative method. Finally, the findings of numerical simulations were compared to the outcomes of laboratory experiments. A very good agreement of numerical and experimental results was achieved; this confirmed the assumptions made to the numerical model and further modelling technique. Numerical model of the piezoelement, analysis of a composite beam with piezoelectric patch, numerical tests for the separated M-8503-P1 piezoelement, electric boundary conditions for the examined actuator, strain state of a glass-epoxy laminate, laboratory test-stand, numerical and laboratory experiment results are presented.
|