Blender jako narzędzie do generacji danych syntetycznych
Artykuł w czasopiśmie
MNiSW
5
spoza listy
Status: | |
Warianty tytułu: |
Blender as a tool for generating synthetic data
|
Autorzy: | Sieczka Rafał, Pańczyk Maciej |
Dyscypliny: | |
Aby zobaczyć szczegóły należy się zalogować. | |
Rok wydania: | 2020 |
Wersja dokumentu: | Drukowana | Elektroniczna |
Język: | polski |
Wolumen/Tom: | 16 |
Strony: | 227 - 232 |
Bazy: | BazTech |
Efekt badań statutowych | NIE |
Materiał konferencyjny: | NIE |
Publikacja OA: | TAK |
Licencja: | |
Sposób udostępnienia: | Witryna wydawcy |
Wersja tekstu: | Ostateczna wersja opublikowana |
Czas opublikowania: | W momencie opublikowania |
Data opublikowania w OA: | 30 września 2020 |
Abstrakty: | angielski | polski |
Acquiring data for neural network training is an expensive and labour-intensive task, especially when such data is difficult to access. This article proposes the use of 3D Blender graphics software as a tool to automatically generate synthetic image data on the example of price labels. Using the fastai library, price label classifiers were trained on a set of synthetic data, which were compared with classifiers trained on a real data set. The comparison of the results showed that it is possible to use Blender to generate synthetic data. This allows for a significant acceleration of the data acquisition process and consequently, the learning process of neural networks. | |
Pozyskiwanie danych do treningu sieci neuronowych, jest kosztownym i pracochłonnym zadaniem, szczególnie kiedy takie dane są trudno dostępne. W niniejszym artykule zostało zaproponowane użycie programu do grafiki 3D Blender, jako narzędzia do automatycznej generacji danych syntetycznych zdjęć, na przykładzie etykiet cenowych. Przy użyciu biblioteki fastai, zostały wytrenowane klasyfikatory etykiet cenowych, na zbiorze danych syntetycznych, które porównano z klasyfikatorami trenowanymi na zbiorze danych rzeczywistych. Porównanie wyników wykazało, że możliwe jest użycie programu Blender do generacji danych syntetycznych. Pozwala to w znaczącym stopniu przyśpieszyć proces pozyskiwania danych, a co za tym idzie proces uczenia sieci neuronowych. |