Neural Modelling of APS Thermal Spray Process Parameters for Optimizing the Hardness, Porosity and Cavitation Erosion Resistance of Al2O3-13 wt% TiO2 Coatings
Artykuł w czasopiśmie
MNiSW
70
Lista 2021
Status: | |
Autorzy: | Szala Mirosław, Łatka Leszek, Awtoniuk Michał, Winnicki Marcin, Michalak Monika |
Dyscypliny: | |
Aby zobaczyć szczegóły należy się zalogować. | |
Rok wydania: | 2020 |
Wersja dokumentu: | Drukowana | Elektroniczna |
Język: | angielski |
Numer czasopisma: | 12 |
Wolumen/Tom: | 8 |
Numer artykułu: | 1544 |
Strony: | 1 - 15 |
Impact Factor: | 2,847 |
Web of Science® Times Cited: | 31 |
Scopus® Cytowania: | 35 |
Bazy: | Web of Science | Scopus |
Efekt badań statutowych | NIE |
Finansowanie: | The research was financed in the framework of the project Lublin University of Technology—Regional Excellence Initiative, funded by the Polish Ministry of Science and Higher Education (contract No. 030/RID/2018/19). |
Materiał konferencyjny: | NIE |
Publikacja OA: | TAK |
Licencja: | |
Sposób udostępnienia: | Witryna wydawcy |
Wersja tekstu: | Ostateczna wersja opublikowana |
Czas opublikowania: | W momencie opublikowania |
Data opublikowania w OA: | 26 listopada 2020 |
Abstrakty: | angielski |
The study aims to elaborate a neural model and algorithm for optimizing hardness and porosity of coatings and thus ensure that they have superior cavitation erosion resistance. Al2O3-13 wt% TiO2 ceramic coatings were deposited onto 316L stainless steel by atmospheric plasma spray (ASP). The coatings were prepared with different values of two spray process parameters: the stand-off distance and torch velocity. Microstructure, porosity and microhardness of the coatings were examined. Cavitation erosion tests were conducted in compliance with the ASTM G32 standard. Artificial neural networks (ANN) were employed to elaborate the model, and the multi-objectives genetic algorithm (MOGA) was used to optimize both properties and cavitation erosion resistance of the coatings. Results were analyzed with MATLAB software by Neural Network Toolbox and Global Optimization Toolbox. The fusion of artificial intelligence methods (ANN + MOGA) is essential for future selection of thermal spray process parameters, especially for the design of ceramic coatings with specified functional properties. Selection of these parameters is a multicriteria decision problem. The proposed method made it possible to find a Pareto front, i.e., trade-offs between several conflicting objectives—maximizing the hardness and cavitation erosion resistance of Al2O3-13 wt% TiO2 coatings and, at the same time, minimizing their porosity. |