Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

Publikacje Pracowników PL z lat 1990-2010

Publikacje pracowników Politechniki Lubelskie z lat 1990-2010 dostępne są jak dotychczas w starej bazie publikacji
LINK DO STAREJ BAZY

MNiSW
140
Lista 2021
Status:
Autorzy: Żukowski Paweł, Rogalski Przemysław, Kołtunowicz Tomasz, Kierczyński Konrad, Bondariev Vitalii
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2021
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Numer czasopisma: 1
Wolumen/Tom: 14
Numer artykułu: 32
Strony: 1 - 26
Web of Science® Times Cited: 6
Scopus® Cytowania: 8
Bazy: Web of Science | Scopus
Efekt badań statutowych NIE
Finansowanie: This research was partially supported by the Polish Ministry of Science and Higher Education as a science fund of the Lublin University of Technology, at the Faculty of Electrical Engineering and Computer Science, FN-28/E/EE/2020. Research of electrical, magnetic, thermal, and mechanical properties of modern electrotechnical and electronic materials, including nanomaterials and diagnostic of electrical devices and their components.
Materiał konferencyjny: NIE
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Witryna wydawcy
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 23 grudnia 2020
Abstrakty: angielski
This article presents direct σDC and alternating σ(f) current conductivity measurements obtained by the frequency domain spectroscopy (FDS) method on cellulose-transformer oil–water nanoparticle composite with a moisture content of (5.0 ± 0.2)% by weight in a temperature range from 293.15 to 333.15 K with step of 8 K. The uncertainty of temperature maintenance during measurements was below ± 0.01 K. The sample was prepared for testing in a manner as close as possible to the cellulose insulation moisturizing process in power transformers. For the analysis of the results obtained, a model of alternating and direct current hopping conductivity was used, based on the quantum phenomenon of electron tunneling between the potential wells and nanodrops of water. It was observed that on the d(logσ)/d(logf)-derived waveforms there was a clear low-frequency maximum, and a tendency to reach the next maximum in the high-frequency area was visible. On this basis it was established that the increase in conductivity takes place in two stages. It was found that the position of σ(f) waveforms in the double logarithmic coordinates is influenced by the temperature dependence both of the conductivity and of the relaxation time of the conductivity. These relationships are described with the appropriate activation energies of the conductivity and relaxation time of conductivity. Based on the analysis of experimental data using Arrhenius diagrams, average values of the activation energy of conductivity ∆Wσ ≈ (0.894 ± 0.0134) eV and the relaxation time of conductivity ΔWτσ ≈ (0.869 ± 0.0107) eV were determined. The values were equal within the limits of uncertainty and their mean value was ∆W ≈ (0.881 ± 0.0140) eV. Using the mean value of the activation energy, the frequency dependence of conductivity, obtained at different temperatures, was shifted to 293.15 K. For this purpose, first the waveforms were shifted along the horizontal and then the vertical axis. It was found that after the shift the σ(f) waveforms for the different temperatures overlap perfectly. This means that the shape of the frequency dependence of the conductivity is determined by the moisture content of the pressboard. The position of the waveforms in relation to the coordinates is determined by the temperature relationships of the conductivity and the relaxation time of the conductivity