Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
100
Lista 2021
Status:
Warianty tytułu:
Niejednoznaczność w wyznaczaniu temperatury krytycznej stalowej ramy przechyłowej z podatnymi węzłami
Autorzy: Maślak Mariusz, Pazdanowski Michał, Snela Małgorzata
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2020
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Numer czasopisma: 4
Wolumen/Tom: 66
Strony: 611 - 632
Web of Science® Times Cited: 1
Scopus® Cytowania: 1
Bazy: Web of Science | Scopus | BazTech
Efekt badań statutowych NIE
Materiał konferencyjny: NIE
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Witryna wydawcy
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 11 grudnia 2020
Abstrakty: angielski | polski
The problem of uniqueness and representativeness of steel frame fire resistance assessment is considered in this paper. The thesis, that the selection of analysis method determines the result in both qualitative and quantitative terms is given scrutiny. It is also shown, that the differences between computed values may be significant. The selection of an appropriate computational model for an analysis of this type seems to be especially important, as the possible overestimation of the fire resistance determined during computation is equivalent to an unjustified optimism of the user with respect to the safety level warranted. In the considerations presented here the critical temperature determined for the whole bearing structure is considered as the measure of sought resistance. The determined temperature is associated with the bearing structure reaching the bearing capacity limit state subject to fire conditions, treated as accidental design situation. Two alternative computational methods have been applied during calculations: the first one – classical, based on 1storder statics and using the buckling length concept for members of the considered frame, and the second one – taking account of 2ndorder phenomena via simple amplification of the horizontal loads applied to the frame. Special attention has been paid to the influence exerted on the final fire resistance of the considered structure by the real joint rigidity, decreasing with increasing temperature of the structural members. The obtained results differ not only in the value of determined temperature but also in the indicated location of the weakest frame component, determining its safety.
W pracy rozważa się problem jednoznaczności i reprezentatywności oszacowania odporności ogniowej ramy stalowej. Weryfikacji poddano tezę, że wybór metody analizy determinuje uzyskany wynik zarówno pod względem ilościowym jak i jakościowym, a różnice pomiędzy wyliczonymi wartościami mogą okazać się znaczące. Dobór miarodajnego modelu obliczeniowego w tego typu analizie wydaje się być szczególnie ważny, bowiem ewentualne przeszacowanie wyznaczonej z obliczeń odporności jest równoznaczne z nieuzasadnionym optymizmem użytkownika budynku co do gwarantowanego mu poziomu bezpieczeństwa. W prezentowanych rozważaniach miarą poszukiwanej odporności jest temperatura krytyczna specyfikowana dla całego ustroju nośnego. Nie zależy ona od prognozowanego scenariusza rozwoju pożaru i z tego względu może zostać uznana za pewnego rodzaju charakterystykę samej konstrukcji. Wyznaczana temperatura kojarzona jest z osiągnięciem przez ustrój nośny stanu granicznego nośności w warunkach pożaru traktowanego jako wyjątkowa sytuacja projektowa. Nie oznacza to jednak natychmiastowej katastrofy badanej konstrukcji ale jedynie sytuację, gdy prawdopodobieństwo tego rodzaju zdarzenia staje się już na tyle duże że nie może być dalej akceptowane. Do szczegółowej analizy wykorzystano dwie alternatywne procedury obliczeń: pierwszą – opartą o klasyczną statykę pierwszego rzędu, z wykorzystaniem koncepcji długości wyboczeniowej elementów badanej ramy, i drugą - uwzględniającą efekty drugiego rzędu przez prostą amplifikację przyłożonego do tej ramy obciążenia poziomego. Szczególną uwagę zwrócono na ocenę wpływu jaki na wynikową odporność ogniową badanego ustroju ma uwzględnienie w obliczeniach rzeczywistej sztywności węzłów, malejącej ze wzrostem temperatury elementów. Otrzymane wyniki różnią się między sobą nie tylko wartością wyznaczonej temperatury ale i wskazaniem lokalizacjinajsłabszego elementu ramy, decydującego o jej bezpieczeństwie. Różnice w oszacowaniach uzyskanych przez autorów dochodzą do 42, 3oC. Ich źródłem jest nie tylko fakt specyfikacji w analizie pierwszego rzędu długości wyboczeniowej prętów ramy (czego nie ma w analizie rzędu drugiego) ale i nieco odmienny charakter realizacji w warunkach pożaru redystrybucji momentów zginających. Jeżeli uwzględnić realną i zależną od temperatury apodatność węzłów to w stosunku do modelu z węzłami w pełni sztywnymi przez cały czas pożaru zwiększa się moment zginający rygle, a to dzieje się kosztem równoczesnego zmniejszenia momentu zginającego słupy.