Recognition of handwritten Latin characters with diacritics using CNN
Artykuł w czasopiśmie
MNiSW
100
Lista 2021
Status: | |
Autorzy: | Łukasik Edyta, Charytanowicz Małgorzata, Miłosz Marek, Tokovarov Mikhail, Kaczorowska Monika, Czerwiński Dariusz, Zientarski Tomasz |
Dyscypliny: | |
Aby zobaczyć szczegóły należy się zalogować. | |
Rok wydania: | 2021 |
Wersja dokumentu: | Drukowana | Elektroniczna |
Język: | angielski |
Numer czasopisma: | 1 |
Wolumen/Tom: | 69 |
Numer artykułu: | e136210 |
Strony: | 1 - 12 |
Impact Factor: | 1,515 |
Web of Science® Times Cited: | 4 |
Scopus® Cytowania: | 7 |
Bazy: | Web of Science | Scopus | BazTech |
Efekt badań statutowych | NIE |
Materiał konferencyjny: | NIE |
Publikacja OA: | TAK |
Licencja: | |
Sposób udostępnienia: | Witryna wydawcy |
Wersja tekstu: | Ostateczna wersja opublikowana |
Czas opublikowania: | W momencie opublikowania |
Data opublikowania w OA: | 26 stycznia 2021 |
Abstrakty: | angielski |
Convolutional Neural Networks (CNN) have achieved huge popularity in solving problems in image analysis and in text recognition. In this work, we assess the effectiveness of CNN-based architectures where a network is trained in recognizing handwritten characters based on Latin script. European languages such as Dutch, French, German, etc., use different variants of the Latin script, so in the conducted research, the Latin alphabet was extended by certain characters with diacritics used in Polish language. To evaluate the recognition results under the same conditions, a handwritten Latin dataset was also developed. The proposed CNN architecture produced an accuracy of 96% for the extended character set. This is comparable to state-of-the-art results found in the domain of identifying handwritten characters. The presented approach extends the usage of CNN-based recognition to different variants of the Latin characters and shows it can be successfully used for a set of languages based on that script. It seems to be an effective technique for a set of languages written using the Latin script. |