Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
100
Lista 2021
Status:
Autorzy: Wójcicki Piotr, Zientarski Tomasz, Charytanowicz Małgorzata, Łukasik Edyta
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2021
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Numer czasopisma: 6
Wolumen/Tom: 21
Numer artykułu: 1934
Strony: 1 - 11
Impact Factor: 3,847
Web of Science® Times Cited: 13
Scopus® Cytowania: 15
Bazy: Web of Science | Scopus
Efekt badań statutowych NIE
Materiał konferencyjny: NIE
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Witryna wydawcy
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 10 marca 2021
Abstrakty: angielski
Regarding wireless sensor network parameter estimation of the propagation model is a most important issue. Variations of the received signal strength indicator (RSSI) parameter are a fundamental problem of a system based on signal strength. In the present paper, we propose an algorithm based on Bayesian filtering techniques for estimating the path-loss exponent of the log-normal shadowing propagation model for outdoor RSSI measurements. Furthermore, in a series of experiments, we will demonstrate the usefulness of the particle filter for estimating the RSSI data. The stability of this algorithm and the differences in determined path-loss exponent for both method were also analysed. The proposed method of dynamic estimation results in significant improvements of the accuracy of RSSI values when compared with the experimental measurements. It should be emphasised that the path-loss exponent mainly depends on the RSSI data. Our results also indicate that increasing the number of inserted particles does not significantly raise the quality of the estimated parameters.