Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

Status:
Autorzy: Horodecki Andrzej
Rok wydania: 2005
Wersja dokumentu: Drukowana | Elektroniczna
Język: polski
Numer czasopisma: 72
Strony: 273 - 275
Bazy: BazTech
Efekt badań statutowych NIE
Materiał konferencyjny: NIE
Publikacja OA: NIE
Abstrakty: angielski
EN The report presents the procedures of the choice of an electromechanical systems optimum based on its econominal mathematical. First procedure presents the relation between joint outlays which are to be destined for a given systems variant and outlays both for its purchase and its operation costs. It is variant choice in the case when outlay category is substituted for another. In other words this economical and mathematical model relates the joint outlays with the type and power of electric driving motor, the characteristic of the working machine driven by this motor, the characteristic of the working machine driven by this motor, the time of operation, etc... The report present also criterions for choosing a systems variant by means of the point method. This point method of assessing electromechanical drive systems properties allows us to include both of the measurable and nonmeasurable features of the systems investigated into one joint calculus. The possibility to describe different values of the intensity of properties of systems did draw the author attention to minimax method based upon Wald' s matrix. This method consist in finding the maximum and minimum value of function of many variables in a certain set of events (searching of the saddle point). In some case the determination of the optimum variant is possible by means mathematical regret minimax method. Mathematical regret method propose the choice of such a possible action that the level of regret for not choosing a best variant should be the smallest. The auxiliary methods can be used simultaneously with other ways of choosing.