Third Hankel determinants for two classes of analytic functions with real coefficients
Artykuł w czasopiśmie
MNiSW
100
Lista 2021
Status: | |
Autorzy: | Sim Young Jae, Zaprawa Paweł |
Dyscypliny: | |
Aby zobaczyć szczegóły należy się zalogować. | |
Rok wydania: | 2021 |
Wersja dokumentu: | Drukowana | Elektroniczna |
Język: | angielski |
Numer czasopisma: | 4 |
Wolumen/Tom: | 33 |
Strony: | 973 - 986 |
Impact Factor: | 0,943 |
Web of Science® Times Cited: | 9 |
Scopus® Cytowania: | 11 |
Bazy: | Web of Science | Scopus |
Efekt badań statutowych | NIE |
Materiał konferencyjny: | NIE |
Publikacja OA: | NIE |
Abstrakty: | angielski |
In recent years, the problem of estimating Hankel determinants has attracted the attention of manymathematicians. Their research have been focused mainly on deriving the bounds ofH2,2orH3,1over dif-ferent subclasses ofS. Only in a few papers third Hankel determinants for non-univalent functions wereconsidered. In this paper, we consider two classes of analytic functions with real coefficients. The first one isthe classTof typically real functions. The second object of our interest isKℝ(i), the class of functions withreal coefficients which are convex in the direction of the imaginary axis. In both classes, we find lower andupper bounds of the third Hankel determinant. The results are sharp. |