Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

Status:
Autorzy: Teter Andrzej, Kołakowski Zbigniew
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Strony: 26 - 26
Efekt badań statutowych NIE
Materiał konferencyjny: TAK
Nazwa konferencji: 24th International Conference on Composite Structures
Skrócona nazwa konferencji: ICCS24
URL serii konferencji: LINK
Termin konferencji: 14 czerwca 2021 do 16 czerwca 2021
Miasto konferencji: Porto
Państwo konferencji: PORTUGALIA
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Inne
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 16 czerwca 2021
Abstrakty: angielski
A problem arises how to estimate a value of the bifurcation shortening for the real structure, in which inevitable geometrical imperfections are embodied. In this case, an effect of bifurcation is not observed and it is impossible to define directly a value of the bifurcation shortening. In the present study, a methodology for determination of an approximate value of the bifurcation shortening for the real thin-walled column under compression has been developed, employing an axial shorteningsquared deflection amplitude plot. It has been shown that the applied method can determine the bifurcation shortening with satisfactory accuracy. The obtained results have been compared to the FEM results. Detailed calculations have been conducted for short angle columns. The eigenvalue problem and the nonlinear post-buckling problem have been solved with the perturbation method based on Byskov-Hutchinson’s method and the finite element method using an Abaqus software package. The axial shortening - squared deflection amplitude plots have been determined and an effect of the imperfection amplitude on the post-buckling behaviour of laminated thin-walled angle columns has been analysed. General configurations of the laminate plies have been selected. All columns have been simply supported at both ends. Because of the computations conducted, it has been found that a value of the shortening corresponding to the bifurcation shortening of the real laminated thin-walled structure can be determined from the shortening - squared deflection amplitude plot, assuming that the post-buckling state is described with a linear relationship on this plot, whereas the value of the bifurcation shortening corresponds to a free term of the straight line approximating the post-buckling mode on the plot. The proposed procedure has been positively verified with the finite element method. The presented method based on the shortening-squared deflection amplitude plot underestimates the bifurcation shortening and the error does not exceed several percent for all cases. If an amplitude of initial deflections is very low, the error is the lowest and does not exceed 1.5%. An increase in the initial deflection amplitude is followed by a quick increase in the error up to a few percent. A further increase in the initial deflection amplitude does not result in a fast growth of the error. Comparing all the results, one can state that the proposed method enables estimation of the bifurcation shortening with a high accuracy in a broad range of initial deflection amplitudes in the case of real structures. The proposed method is by far more accurate than the already known methods. In all cases of the initial deflection amplitude, the error is acceptable and it is less than 12.3%. In the case of the load-shortening method or the load - squared deflection method, the estimation error of the bifurcation load is twice as high, whereas an application of the intersection method causes that the error grows sharply and it is four times higher.