The significance of the solid-to-liquid ratio in the electrokinetic studies of the effect of ionic surfactants on mineral oxides.
Artykuł w czasopiśmie
MNiSW
30
Lista A
Status: | |
Autorzy: | Mączka Edward, Luetzenkirchen Johannes, Kosmulski Marek |
Rok wydania: | 2013 |
Wersja dokumentu: | Drukowana | Elektroniczna |
Język: | angielski |
Wolumen/Tom: | 393 |
Strony: | 228 - 233 |
Impact Factor: | 3,552 |
Web of Science® Times Cited: | 17 |
Scopus® Cytowania: | 16 |
Bazy: | Web of Science | Scopus | Google Scholar | ScienceDirect |
Efekt badań statutowych | NIE |
Materiał konferencyjny: | NIE |
Publikacja OA: | NIE |
Abstrakty: | angielski |
The effect of SDS on the electrokinetic behavior of TiO(2) and Al(2)O(3) was studied by electrophoresis at various solid-to-liquid ratios. Additionally, the effect of CTAB on electrokinetic curves of Al(2)O(3) single crystal and of Al(2)O(3) particles was studied by streaming potential. At a sufficiently low solid-to-liquid ratio, the electrokinetic potential was negative and almost pH-independent in the presence of SDS and positive and pH-independent in the presence of CTAB. Further decrease in the solid-to-liquid ratio had a limited effect on the course of the electrokinetic curves. At a sufficiently high solid-to-liquid ratio, the electrokinetic potential was not affected by the presence of the surfactant. At moderate solid-to-liquid ratios, the electrokinetic potential in the presence of SDS was negative and almost pH-independent at very high and at very low pH, and less negative or even positive electrokinetic potential (more positive at higher solid-to-liquid ratios) was observed at moderate pH with a peak 1 to 2 pH units below the pristine IEP. The inspection of the results (obtained at single solid-to-liquid ratio) from the literature confirmed the above trends, also for oxides other than TiO(2) or Al(2)O(3). The range of solid-to-liquid ratios, which can be covered by electrophoresis is limited by insufficient signal, and by insufficient transparency at low and at high solid-to-liquid ratios, respectively. The available range of solid-to-liquid ratios can be extended by using the electroacoustic method. Apparently, the significance of the solid-to-liquid ratio in the electrokinetic studies of oxide-ionic surfactant systems is underrated. To our best knowledge, this is the first systematic study of such an effect ever published, and in many publications, the solid-to-liquid ratio was not reported and probably not even controlled. Copyright © 2012 Elsevier Inc. All rights reserved. |