Forecasting Water Quality Index in Groundwater Using Artificial Neural Network
Artykuł w czasopiśmie
MNiSW
140
Lista 2021
Status: | |
Autorzy: | Kulisz Monika, Kujawska Justyna, Przysucha Bartosz, Cel Wojciech |
Dyscypliny: | |
Aby zobaczyć szczegóły należy się zalogować. | |
Rok wydania: | 2021 |
Wersja dokumentu: | Drukowana | Elektroniczna |
Język: | angielski |
Numer czasopisma: | 18 |
Wolumen/Tom: | 14 |
Numer artykułu: | 5875 |
Strony: | 1 - 16 |
Impact Factor: | 3,252 |
Web of Science® Times Cited: | 40 |
Scopus® Cytowania: | 53 |
Bazy: | Web of Science | Scopus | Academic OneFile (Gale) AGRIS CABI CAPlus / SciFinder China Academic Journals (CNKI) DOAJ EBSCO Engineering Village Inspec J-Gate LAPSE - Living Archive for Process Systems Engineering ProQuest |
Efekt badań statutowych | NIE |
Materiał konferencyjny: | NIE |
Publikacja OA: | TAK |
Licencja: | |
Sposób udostępnienia: | Witryna wydawcy |
Wersja tekstu: | Ostateczna wersja opublikowana |
Czas opublikowania: | W momencie opublikowania |
Data opublikowania w OA: | 16 września 2021 |
Abstrakty: | angielski |
Groundwater quality monitoring in the vicinity of drilling sites is crucial for the protection of water resources. Selected physicochemical parameters of waters were marked in the study. The water was collected from 19 wells located close to a shale gas extraction site. The water quality index was determined from the obtained parameters. A secondary objective of the study was to test the capacity of the artificial neural network (ANN) methods to model the water quality index in groundwater. The number of ANN input parameters was optimized and limited to seven, which was derived using a multiple regression model. Subsequently, using the stepwise regression method, models with ever fewer variables were tested. The best parameters were obtained for a network with five input neurons (electrical conductivity, pH as well as calcium, magnesium and sodium ions), in addition to five neurons in the hidden layer. The results showed that the use of the parameters is a convenient approach to modeling water quality index with satisfactory and appropriate accuracy. Artificial neural network methods exhibited the capacity to predict water quality index at the desirable level of accuracy (RMSE = 0.651258, R = 0.9992 and R2 = 0.9984). Neural network models can thus be used to directly predict the quality of groundwater, particularly in industrial areas. This proposed method, using advanced artificial intelligence, can aid in water treatment and management. The novelty of these studies is the use of the ANN network to forecast WQI groundwater in an area in eastern Poland that was not previously studied—in Lublin. |