Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
140
Lista 2021
Status:
Autorzy: Ambrożkiewicz Bartłomiej, Czyż Zbigniew, Karpiński Paweł, Stączek Paweł, Litak Grzegorz, Grabowski Łukasz
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2021
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Numer czasopisma: 19
Wolumen/Tom: 14
Numer artykułu: 5816
Strony: 1 - 15
Impact Factor: 3,748
Web of Science® Times Cited: 14
Scopus® Cytowania: 19
Bazy: Web of Science | Scopus
Efekt badań statutowych NIE
Finansowanie: The project/research was financed in the framework of the project Lublin University of Technology—Regional Excellence Initiative, funded by the Polish Ministry of Science and Higher Education (contract no. 030/RID/2018/19).
Materiał konferencyjny: NIE
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Witryna wydawcy
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 5 października 2021
Abstrakty: angielski
This paper analyzes the energy efficiency of a Micro Fiber Composite (MFC) piezoelectric system. It is based on a smart Lead Zirconate Titanate material that consists of a monolithic PZT (piezoelectric ceramic) wafer, which is a ceramic-based piezoelectric material. An experimental test rig consisting of a wind tunnel and a developed measurement system was used to conduct the experiment. The developed test rig allowed changing the air velocity around the tested bluff body and the frequency of forced vibrations as well as recording the output voltage signal and linear acceleration of the tested object. The mechanical vibrations and the air flow were used to find the optimal performance of the piezoelectric energy harvesting system. The performance of the proposed piezoelectric wind energy harvester was tested for the same design, but of different masses. The geometry of the hybrid bluff body is a combination of cuboid and cylindrical shapes. The results of testing five bluff bodies for a range of wind tunnel air flow velocities from 4 to 15 m/s with additional vibration excitation frequencies from 0 to 10 Hz are presented. The conducted tests revealed the areas of the highest voltage output under specific excitation conditions that enable supplying low-power sensors with harvested energy.