Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

Publikacje Pracowników PL z lat 1990-2010

Publikacje pracowników Politechniki Lubelskie z lat 1990-2010 dostępne są jak dotychczas w starej bazie publikacji
LINK DO STAREJ BAZY

MNiSW
70
Lista 2021
Status:
Autorzy: Kulakova Yelena, Wójcik Waldemar, Suleimenov Aituar, Smolarz Andrzej
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2021
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Numer czasopisma: 3
Wolumen/Tom: 67
Strony: 363 - 368
Web of Science® Times Cited: 0
Scopus® Cytowania: 0
Bazy: Web of Science | Scopus
Efekt badań statutowych NIE
Materiał konferencyjny: NIE
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Otwarte czasopismo
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 31 lipca 2021
Abstrakty: angielski
Efficient control of the process of jigging ore of small and fine grain allows avoiding the loss of valuable material in production residual. Due to the multi-dimensionality and multi-connectivity of this enrichment process, classical control methods do not allow achieving the maximum technological indicators of enrichment. This paper proposes investigating intelligent algorithms for controlling the jigging process, which determine the key variables - the level of the natural «bed» and the ripple frequency of the jigging machine. Algorithms are developed using fuzzy logic, neural and hybrid networks. The adequacy of intelligent algorithms was evaluated using the following criteria: correlation of expert and model values (R); Root Mean Square Error (RMSE); Mean absolute percentage error (MAPE). To assess the adequacy of the obtained algorithms, a test sample of input variables, different from the training one, was compiled. As a consequence, we determined an algorithm that gives a minimal discrepancy between the calculated and experimental data.