Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
5
spoza listy
Status:
Warianty tytułu:
Porównanie klasycznych algorytmów uczenia maszynowego w zadaniu klasyfikacji liczb pisanych odręcznie
Autorzy: Voloshchenko Oleksandr , Plechawska-Wójcik Małgorzata
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2021
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Wolumen/Tom: 21
Strony: 279 - 286
Bazy: Baztech
Efekt badań statutowych NIE
Materiał konferencyjny: NIE
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Witryna wydawcy
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 30 grudnia 2021
Abstrakty: angielski | polski
The purpose of this paper is to compare classical machine learning algorithms for handwritten number classification. The following algorithms were chosen for comparison: Logistic Regress ion, SVM, Decision Tree, Random Forest and k-NN. MNIST handwritten digit database is used in the task of training and testing the above algorithms. The dataset consists of 70,000 images of numbers from 0 to 9. The algorithms are compared considering such criteria as the learning speed, prediction construction speed, host machine load, and classificat ion accuracy. Each algorithm went through the training and testing phases 100 times, with the desired metrics retained at each iteration. The results were averaged to reach the reliable outcomes
Celem niniejszej pracy jest porównanie klasycznych algorytmów uczenia maszynowego do klasyfikacji liczb pisanych odręcznie. Do porównania wybrano następujące algorytmy: Logistic Regression, SVM, Decision Tree, Random Forest oraz k- NN. Do szkolenia i testowania powyższych algorytmów wykorzystano zbiór danych MNIST. Zbiór danych składa się z 70 000 obrazów cyfr od 0 do 9. Algorytmy porównywane są z uwzględnieniem takich kryteriów jak szybkość uczenia, szybkość budowania predykcji, obciążenie maszyny głównej oraz dokładność klasyfikacji. Każdy algorytm przeszedł przez fazy szkolenia i testowania 100 razy, z zachowaniem pożądanych metryk przy każdej iteracji. Wyniki zostały uśrednione w celu uzyskania wiarygodnych rezultatów.