Development of an algorithm for solving the problem of optimal control on a finite interval for a nonlinear system of a three-sector economic cluster
Artykuł w czasopiśmie
MNiSW
40
Lista 2021
Status: | |
Autorzy: | Murzabekov Zainelkhriet N., Miłosz Marek, Tussupova Kamshat, Mirzakhmedova Gulbanu |
Dyscypliny: | |
Aby zobaczyć szczegóły należy się zalogować. | |
Rok wydania: | 2022 |
Wersja dokumentu: | Drukowana | Elektroniczna |
Język: | angielski |
Numer czasopisma: | 3(115) |
Wolumen/Tom: | 1 |
Strony: | 43 - 52 |
Scopus® Cytowania: | 0 |
Bazy: | Scopus |
Efekt badań statutowych | NIE |
Materiał konferencyjny: | NIE |
Publikacja OA: | TAK |
Licencja: | |
Sposób udostępnienia: | Otwarte czasopismo |
Wersja tekstu: | Ostateczna wersja opublikowana |
Czas opublikowania: | W momencie opublikowania |
Data opublikowania w OA: | 28 lutego 2022 |
Abstrakty: | angielski |
The problem of optimal control over a finite time interval for a mathematical model of a three-sector economic cluster is posed. The economic system is reduced by means of transformations to the optimal control problem for one class of nonlinear systems with coefficients depending on the state of the control object. Two optimal control problems for one class of nonlinear systems with and without control constraints are considered. The nonlinear objective functional in these problems depends on the control and state of the object. Then, using the results of solving optimal control problems on a finite interval, an algorithm for solving the problem for a nonlinear system of a three-sector economic cluster is developed. A nonlinear control based on the feedback principle using Lagrange multipliers of a special kind is found. The results obtained for nonlinear systems are used to construct the control parameters of a mathematical model of a three-sector economic cluster at a finite time interval with a given functional and various initial conditions. The results of the system state calculation are shown in the figures, the optimal controls satisfy the given constraints. The optimal distribution of labor and investment resources for a three-sector economic cluster is determined. They ensure that the system is brought into an equilibrium state and satisfy balance ratios. These results are useful for practice and are important because there are a number of optimal control problems when it is necessary to transfer a system from an initial state to a desired final state for a given time interval. Such problems often arise for an economic system when a certain level of development is required. |