Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
140
Lista 2021
Status:
Autorzy: Kołtunowicz Tomasz, Kierczyński Konrad, Okal Paweł, Patryn Aleksy, Gutten Miroslav
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2022
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Numer czasopisma: 8
Wolumen/Tom: 15
Numer artykułu: 2924
Strony: 1 - 14
Web of Science® Times Cited: 2
Scopus® Cytowania: 2
Bazy: Web of Science | Scopus
Efekt badań statutowych NIE
Finansowanie: The research was supported by the subsidy of the Ministry of Education and Science (Poland) for the Lublin University of Technology as funds allocated for scientific activities in the scientific discipline of Automation, Electronics, and Electrical Engineering—grants: FD-20/EE-2/702, FD-20/EE-2/703, and FD-20/EE-2/705.
Materiał konferencyjny: NIE
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Witryna wydawcy
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 15 kwietnia 2022
Abstrakty: angielski
The aim of this study was to perform precision measurements of the frequency-temperature dependences of the loss angle tangent of the liquid-solid composite with the FDS Dirana meter. The composite consisted of heavily moistered oil-impregnated pressboard. The moisturization of the pressboard occurred in a manner as close as possible to the process of wetting the insulation in power transformers to a moisture content of (5.0 ± 0.2) wt. %. This value of moisture content was chosen because exceeding this value can lead to transformer failure. The measuring temperature range was from 293.15 K (20 ◦C) to 333.15 K (60 ◦C), with a step of 8 K. The measuring frequency range was 0.0001 Hz to 5000 Hz. It was observed that the shape of the frequency dependence of the loss angle tangent for a moisture content of 5.0 wt. % does not depend on the value of the measuring temperature. An increase in temperature leads to a shift of the waveforms into the higher frequency region. This is associated with a decrease in the relaxation time, and its value depends on the activation energy. It was found that a good fit of the waveforms, simulated by Dirana, to the actual tgδ waveforms obtained at temperatures between 293.15 K (20 ◦C) and 333.15 K (60 ◦C) requires the introduction of temperatures, higher than the actual insulation temperatures, into the program. It was found that estimating the moisture content for different temperatures using Dirana soft-ware for insulating an oil-impregnated pressboard produced large discrepancies from the actual content. Better results were obtained after an adjustment requiring manual temperature correction towards higher, compared to measured, temperatures. The moisture content estimated after correction by the Dirana meter ranges from of 4.5 wt. % to 5.7 wt. % and increases almost linearly with increasing measuring temperature. The average moisture content estimated by the Dirana meter for all measuring temperatures is 5.1 wt. % and is close to the actual content (5.0 ± 0.2) wt. %. The uncertainty of the estimate is ±0.43 wt. % and is more than twice as high as the true value.