Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
140
Lista 2021
Status:
Autorzy: Mikulski Maciej, Hunicz Jacek, Duda Kamil, Kazimierski Paweł, Suchocki Tomasz, Rybak Arkadiusz
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2022
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Wolumen/Tom: 320
Numer artykułu: 123869
Strony: 1 - 14
Web of Science® Times Cited: 9
Scopus® Cytowania: 12
Bazy: Web of Science | Scopus
Efekt badań statutowych NIE
Finansowanie: The research was financed in the framework of the project Lublin University of Technology, Regional Excellence Initiative, funded by the Polish Ministry of Science and Higher Education (contract No. 030/RID/2018/19). The authors wish to thank AVL List GmbH for making the simulation software available within a framework of the AVL University Partnership Program.
Materiał konferencyjny: NIE
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Witryna wydawcy
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 16 marca 2022
Abstrakty: angielski
There is abundant worldwide research into combustion engine applications for tyre pyrolysis oil (TPO). How- ever, most studies are methodologically outdated in terms of their assumed technology, either with regard to TPO production or engine application, or in their analytical approaches. The variety of radically different studies produce conflicting or ambiguous results, rendering TPÓs role as a feasible future fuel uncertain. This study is the first to provide state-of-the art combustion analysis results for thoroughly-evaluated TPO fraction optimised in a modern, industry-grade pyrolytic reactor. The fuel blends are selected for engine tests, taking into account the overall availability/compatibility of their TPO fractions with diesel. Testing with a modern, sophisticated single- cylinder research engine provides detailed analysis of combustion and both regulated and unregulated emissions. Emissions results are supported by FTIR analysis of exhaust gases, including identification of 23 species. The results show that contemporary Tier 4-compliant combustion systems with multi-pulse injection can handle high TPO-content fuels without needing re-calibration. With diesel/TPO blends of up to 40% TPO admixture, com- bustion phasing is substantially delayed (by 3CAD) only at near-idle loads and particularly when using heavy exhaust gas recirculation. The consequential differences in performance and emissions diminish over the test cycle. Current US EPA Tier 4 emission limits are not particularly challenging for TPO, even at 40% blending rate, but its elevated levels of particulate matter (25% increase over test cycle versus diesel baseline), sulphur oxides, aromatics and formic acid present health concerns and potential maintenance issues. These should be considered when assessing the fueĺs life-cycle environmental impact. The increase in emissions of those species correlates directly with fuel sulphur content (0.5% for neat TPO fraction), polyaromatic hydrocarbons fraction (0.49%) and acidity. Further optimisation of TPÓs composition in the reactor and via improved fuel post-processing can address these issues.