Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
100
Lista 2021
Status:
Autorzy: Kaczorowska Monika, Plechawska-Wójcik Małgorzata, Tokovarov Mikhail, Krukow Paweł
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2022
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Numer czasopisma: 5
Wolumen/Tom: 12
Numer artykułu: 542
Strony: 1 - 15
Impact Factor: 3,3
Web of Science® Times Cited: 0
Scopus® Cytowania: 0
Bazy: Web of Science | Scopus
Efekt badań statutowych NIE
Materiał konferencyjny: NIE
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Witryna wydawcy
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 23 kwietnia 2022
Abstrakty: angielski
The study is focused on applying ex-Gaussian parameters of eye-tracking and cognitive measures in the classification process of cognitive workload level. A computerised version of the digit symbol substitution test has been developed in order to perform the case study. The dataset applied in the study is a collection of variables related to eye-tracking: saccades, fixations and blinks, as well as test-related variables including response time and correct response number. The application of ex-Gaussian modelling to all collected data was beneficial in the context of detection of dissimilarity in groups. An independent classification approach has been applied in the study. Several classical classification methods have been invoked in the process. The overall classification accuracy reached almost 96%. Furthermore, the interpretable machine learning model based on logistic regression was adapted in order to calculate the ranking of the most valuable features, which allowed us to examine their importance.