Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
140
Lista 2021
Status:
Autorzy: Zagórski Ireneusz, Szczepaniak Anna, Kulisz Monika, Korpysa Jarosław
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2022
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Numer czasopisma: 9
Wolumen/Tom: 15
Numer artykułu: 3184
Strony: 1 - 31
Impact Factor: 3,4
Web of Science® Times Cited: 4
Scopus® Cytowania: 6
Bazy: Web of Science | Scopus
Efekt badań statutowych NIE
Finansowanie: The project/research was financed in the framework of the project Lublin University of Technology—Regional Excellence Initiative, funded by the Polish Ministry of Science and Higher Education (contract no. 030/RID/2018/19).
Materiał konferencyjny: NIE
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Witryna wydawcy
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 21 kwietnia 2022
Abstrakty: angielski
This paper shows the surface quality results after finishing milling of AZ91D and AZ31 magnesium alloys. The study was performed for variable technological parameters: cutting speed, feed per tooth, axial depth of cut and radial depth of cut. The tools used in the study were two carbide cutters with a different tool cutting edge helix angle. The measurement of the research results presented the surface roughness parameters was made on the lateral faces and the end faces of the specimens. Statistical analysis and simulations using artificial neural networks were carried out with the Statistica software. The normality of the distribution was examined, and the hypotheses of the equality of mean values and variance were verified. For the AZ91D magnesium alloy on the lateral and the end faces (Ra, Rz parameters), simulations were carried out. Two types of ANN were used: MLP (Multi-layered perceptron) and RBF (Radial Basis Function). To increase the machining stability and to obtain a high surface finish, the more suitable tool for finishing milling is the tool with a helix angle of λs = 20◦. Artificial neural networks have been shown to be a good tool for predicting surface roughness parameters of magnesium alloys after finishing milling.