Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
100
Lista 2021
Status:
Autorzy: Zawada-Michałowska Magdalena
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2022
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Numer czasopisma: 3
Wolumen/Tom: 16
Strony: 98 - 110
Impact Factor: 1,1
Web of Science® Times Cited: 3
Scopus® Cytowania: 4
Bazy: Web of Science | Scopus | BazTech
Efekt badań statutowych NIE
Finansowanie: This work was financed from the funds of the Ministry of Education and Science by Agreement No. DNK/SP/513880/2021 of 22 December 2021, the project “14th School of Machining and the 43rd Scientific School of Abrasive Machining”, under the programme “Perfect Science”.
Materiał konferencyjny: NIE
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Otwarte czasopismo
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 15 maja 2022
Abstrakty: angielski
The paper presents an overview of high-performance milling techniques of thin-walled elements. Currently, the tendency to simplify semi-finished products is used in aviation. In that case even 95% of semi-finished product mass is converted into chips, hence the increasing interest in such technologies as: High Performance Cutting (HPC) and High Speed Cutting (HSC). The aim of the paper was to research high-performance milling techniques of thin- walled elements in reference to conventional machining. The material was the EN AW-7075 T651 aluminium alloy. A thin-walled pocket structure was designed and manufactured. The aspects related to geometric accuracy, surface quality and cutting time were analysed. On the basis of the obtained results, it was found that in case of geometric accuracy related to the wall deformation, the greatest deformation was obtained after HPC, while the smallest one after HSC. The difference was over 400% (comparing HPC to HSC). A similar relationship was also received for the quality of the machined surface. Analysing the cutting time, the best result was achieved after HPC in reference to HSC and conventional machining. Taking into account all analysed variables, prime solution was a combination of HPC and HSC. Thanks to the use of high-speed machining as a finishing, it is possible to receive high geometric accuracy and quality of the machined surface, while the application of HPC for roughing allows to shorten the cut- ting time, translating into an increase in the efficiency of the milling process. Conventional machining is slightly less advantageous in terms of geometric accuracy and surface quality and it could possibly be used alternatively with High Speed Cutting, but its weakness is significantly lower efficiency compared to high-performance machining.