A Hybrid Feature Selection Framework Using Improved Sine Cosine Algorithm with Metaheuristic Techniques
Artykuł w czasopiśmie
MNiSW
140
Lista 2021
Status: | |
Autorzy: | Sun Lichao, Qin Hang, Przystupa Krzysztof, Cui Yanrong, Kochan Orest, Skowron Mikołaj, Su Jun |
Dyscypliny: | |
Aby zobaczyć szczegóły należy się zalogować. | |
Rok wydania: | 2022 |
Wersja dokumentu: | Drukowana | Elektroniczna |
Język: | angielski |
Numer czasopisma: | 10 |
Wolumen/Tom: | 15 |
Numer artykułu: | 3485 |
Strony: | 1 - 24 |
Impact Factor: | 3,2 |
Web of Science® Times Cited: | 10 |
Scopus® Cytowania: | 12 |
Bazy: | Web of Science | Scopus |
Efekt badań statutowych | NIE |
Finansowanie: | This work was supported by the 2021 Wuxi Science and Technology Innovation and Entrepreneurship Program. |
Materiał konferencyjny: | NIE |
Publikacja OA: | TAK |
Licencja: | |
Sposób udostępnienia: | Witryna wydawcy |
Wersja tekstu: | Ostateczna wersja opublikowana |
Czas opublikowania: | W momencie opublikowania |
Data opublikowania w OA: | 10 maja 2022 |
Abstrakty: | angielski |
Feature selection is the procedure of extracting the optimal subset of features from an elementary feature set, to reduce the dimensionality of the data. It is an important part of improving the classification accuracy of classification algorithms for big data. Hybrid metaheuristics is one of the most popular methods for dealing with optimization issues. This article proposes a novel feature selection technique called MetaSCA, derived from the standard sine cosine algorithm (SCA). Founded on the SCA, the golden sine section coefficient is added, to diminish the search area for feature selection. In addition, a multi‐level adjustment factor strategy is adopted to obtain an equilibrium between exploration and exploitation. The performance of MetaSCA was assessed using the following evaluation indicators: average fitness, worst fitness, optimal fitness, classification accuracy, average proportion of optimal feature subsets, feature selection time, and standard deviation. The performance was measured on the UCI data set and then compared with three algorithms: the sine cosine algorithm (SCA), particle swarm optimization (PSO), and whale optimization algorithm (WOA). It was demonstrated by the simulation data results that the MetaSCA technique had the best accuracy and optimal feature subset in feature selection on the UCI data sets, in most of the cases. |