Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
70
Lista 2021
Status:
Autorzy: Samuel Olusegun David, Kaveh Mohammad, Verma Tikendra Nath, Okewale A. O., Oyedepo S. O., Abam Fidelis, Nwaokocha Collins N., Abbas Mohamed, Enweremadu Christopher C., Khalife Esmail, Szymanek Mariusz, Dziwulski Jacek, Saleel C. Ahamed
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2022
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Wolumen/Tom: 35
Numer artykułu: 102095
Strony: 1 - 21
Impact Factor: 6,8
Web of Science® Times Cited: 13
Scopus® Cytowania: 18
Bazy: Web of Science | Scopus
Efekt badań statutowych NIE
Materiał konferencyjny: NIE
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Witryna wydawcy
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 6 maja 2022
Abstrakty: angielski
Modelling and enhancing green diesel production in biodiesel industries have been limited due to the fiasco of the classical approach to pursue space with continuous convergence velocity, getting entombed in local minima and unswerving resolutions. For the first time, the study showcased the optimization protocol for the development of biodiesel production from tobacco seed oil (TSO) on the batch reactor assisted with the novel ternary model Grey Wolf-Response Surface Methodology-Artificial Neural Network (GWO-RSM-ANN) approaches. Correlation of lower calorific value (LCV), higher calorific value (HCV), and specific heat capacity (Cp) of tobacco seed oil methyl ester (TSOME/B100/TSOB) and diesel blends were postulated. The prime production yield of TSOME was modelled using RSM, ANN, and GWO approaches. The substantial basic properties of the fuel categories were examined using ASTM test methods, while the LCV and HCV were detected using standard procedures. The yield of TSOME (90.2%) was the maximum at the methanol/TSO molar ratio of 5.95, KOH of 1.15 wt%, and methylic duration of 77.6 min. The formulated ANN model configuration (3-15-1) exhibited higher flexibility and ability to display nonlinear relationships. The estimated coefficient of determination (R2) of 0.9999, mean average error (MAE) of 0.00035, and RMSE of 0.00105 for the GWO model compared to those of R2 of 0.9825, MAE of 1.3145, and RMSE of 1.7087 for RSM model; and R2 of 0.9976, MAE of 0.2405, and RMSE of 0.6381 for ANN model vindicate the superiority of GWO model over the RSM and ANN models. The major fuel properties agreed with the ranges of the ASTMD6751 and EN 14214 specifications. The LCV, HCV, and Cp are also correlated with the TSOME fraction through the linear equations. There were excellent correlations between the analyzed and calculated values for the LCVs and HCVs. The maximum absolute error between the measured and estimated LCV and HCV are is 0.108% for 20%TSOME (20% TSOME +80% diesel fuel), and 0.17% for pure diesel, respectively. The model and correlations can provide database information in the biodiesel and automotive industries.