Zgadzam się
Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.
One of the major drawback of Genetic Algorithm (GA) based solutions to many
optimization problems is the difficulty to obtain convergence to an optimal solution. One of the
possible reason for not obtaining good convergence is due to the improper encoding of
chromosomes. Many techniques were proposed in some previous researches for improving the
convergence of GA based solutions. However, no consideration regarding the role of
chromosome encoding in achieving convergence and optimality both has been discussed in the
past. In the present work, a can volume optimization problem is solved with the help of two types
of chromosome encoding techniques that are proposed and evaluated in GA environment. First,
based on single random gene selection and second based on mean value of genes of the encoded
chromosome. A numerical example with an objective function and constraints has been
solved and the results for each of the scheme is being discussed.